Heegner point computations over function fields
نویسنده
چکیده
These are the notes of an expanded version of the project done under the direction of Douglas Ulmer at Arizona Winter School 2000 The Arithmetic of Function Fields. We carefully explain how to compute explicitly the Heegner points for an elliptic curve defined over F2(T ).
منابع مشابه
Higher Heegner points on elliptic curves over function fields
Let E be a modular elliptic curve defined over a rational function field k of odd characteristic. We construct a sequence of Heegner points on E, defined over a Zp -tower of finite extensions of k, and show that these Heegner points generate a group of infinite rank. This is a function field analogue of a result of C. Cornut and V. Vatsal.
متن کاملHeegner Point Computations Via Numerical p-Adic Integration
Building on ideas of Pollack and Stevens, we present an efficient algorithm for integrating rigid analytic functions against measures obtained from automorphic forms on definite quaternion algebras. We then apply these methods, in conjunction with the Jacquet-Langlands correspondence and the Cerednik-Drinfeld theorem, to the computation of p-adic periods and Heegner points on elliptic curves de...
متن کاملThe rationality of Stark-Heegner points over genus fields of real quadratic fields
We study the algebraicity of Stark-Heegner points on a modular elliptic curve E. These objects are p-adic points on E given by the values of certain p-adic integrals, but they are conjecturally defined over ring class fields of a real quadratic field K. The present article gives some evidence for this algebraicity conjecture by showing that linear combinations of Stark-Heegner points weighted b...
متن کاملStark-Heegner points over real quadratic fields
Motivated by the conjectures of “Mazur-Tate-Teitelbaum type” formulated in [BD1] and by the main result of [BD3], we describe a conjectural construction of a global point PK ∈ E(K), where E is a (modular) elliptic curve over Q of prime conductor p, and K is a real quadratic field satisfying suitable conditions. The point PK is constructed by applying the Tate p-adic uniformization of E to an ex...
متن کاملPreface Henri Darmon
Modular curves and their close relatives, Shimura curves attached to multiplicative subgroups of quaternion algebras, are equipped with a distinguished collection of points defined over class fields of imaginary quadratic fields and arising from the theory of complex multiplication: the so-called Heegner points. It is customary to use the same term to describe the images of degree zero divisors...
متن کامل